Loosely coupled HMMs for ASR

نویسندگان

  • Harriet J. Nock
  • Steve J. Young
چکیده

Hidden Markov Models (HMMs) have been successful for modelling the dynamics of carefully dictated speech, but their performance degrades severely when used to model conversational speech. This paper presents a preliminary feasibility study of an alternative class of models: loosely coupled HMMs. Since speech is produced by a system of loosely coupled articulators, stochastic models explicitly representing this parallelism may have advantages for automatic speech recognition (ASR), particularly when trying to model the phonological effects inherent in casual spontaneous speech. The paper evaluates one coupled model on a simple ASR task, using both exact and approximate estimation schemes. We conclude such models merit further investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling asynchrony in automatic speech recognition using loosely coupled hidden Markov models

Hidden Markov models (HMMs) have been successful for modelling the dynamics of carefully dictated speech, but their performance degrades severely when used to model conversational speech. Since speech is produced by a system of loosely coupled articulators, stochastic models explicitly representing this parallelism may have advantages for automatic speech recognition (ASR), particularly when tr...

متن کامل

Investigation on Reliability Estimation of Loosely Coupled Software as a Service Execution Using Clustered and Non-Clustered Web Server

Evaluating the reliability of loosely coupled Software as a Service through the paradigm of a cluster-based and non-cluster-based web server is considered to be an important attribute for the service delivery and execution. We proposed a novel method for measuring the reliability of Software as a Service execution through load testing. The fault count of the model against the stresses of users ...

متن کامل

What Hmms Can’t Do

Hidden Markov models (HMMs) are the predominant methodology for automatic speech recognition (ASR) systems. Ever since their inception, it has been said that HMMs are an inadequate statistical model for such purposes. Results over the years have shown, however, that HMM-based ASR performance continually improves given enough training data and engineering effort. In this paper, we argue that the...

متن کامل

What HMMs Can Do

Since their inception almost fifty years ago, hidden Markov models (HMMs) have have become the predominant methodology for automatic speech recognition (ASR) systems — today, most state-of-the-art speech systems are HMM-based. There have been a number of ways to explain HMMs and to list their capabilities, each of these ways having both advantages and disadvantages. In an effort to better under...

متن کامل

A survey of hybrid ANN/HMM models for automatic speech recognition

In spite of the advances accomplished throughout the last decades, automatic speech recognition (ASR) is still a challenging and di$cult task. In particular, recognition systems based on hidden Markov models (HMMs) are e!ective under many circumstances, but do su!er from some major limitations that limit applicability of ASR technology in real-world environments. Attempts were made to overcome ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000